2025-02-17 04:02:16
TOPTICAFemtoFiberultra920超快光纖激光器是一種易于操作且無需維護的激光系統。其輸出波長為920nm,非常適合常規熒光基團(如GFP,eGFP,Eosin,GCaMP,CFP,Calcein或者Venus)的雙光子激發。能給熒光基團提供比較高的峰值功率,常用于神經科學和其他與激光有關的生物光子學學科。而且其獨特設計(制造簡單且經濟高效的光源)對雙光子熒光顯微鏡發展的革新具有潛在的可能。在雙光子顯微鏡中,峰值功率就是亮度!如果您希望獲得比較好的圖像亮度,那么你就需要短脈沖,高功率,較重要的是需要干凈的時間脈沖形狀。FemtoFiberultra920具有足夠高的輸出功率,較短的脈沖和獨特的Clean-Pulse技術,以及具有相對比較高的峰值功率,使得其在雙光子顯微鏡中可以實現****的亮度,而不會對樣品造成不必要的加熱。FemtoFiberultra920交鑰匙,完全集成的色散補償(可確保樣品處的脈沖較短),內置的功率控制,操作直觀以及其堅固而緊湊的設計,使該系統具有極為友好的用戶體驗,是非線性顯微鏡應用的較好解決方案。例如熒光蛋白的雙光子激發和基于SHG的對比機制。由于其非侵入性和高分辨率的特點,雙光子顯微鏡成為了研究神經科學、ai癥研究、免疫學等領域的重要工具。國外激光雙光子顯微鏡授權供應商
WinfriedDenk較初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態光源優勢,鈦寶石激光器還具有較寬的近紅外波長調諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。下圖是Thorlabs的雙光子和三光子顯微鏡配置,鈦寶石飛秒可調諧激光器位于平臺較左邊。科學家正在從雙光子轉向三光子顯微鏡。1996年,ChrisXu在康奈爾大學(Denk同導師實驗室)讀博期間發明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來也是自然的發展方向。三光子成像使用更長的波長,大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強和更短的激光脈沖,而傳統的鈦寶石激光器難以達到這些要求,但是對于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。進口ultima雙光子顯微鏡的原理雙光子顯微鏡能夠進行光裂解、光轉染和光損傷等光學操縱。
在高光子密度的情況下,熒光分子可以同時吸收兩個長波長的光子,然后發射出一個波長較短的光子,其效果和使用一個波長為長波長一半的光子去激發熒光分子是相同的(如下圖)。如煙酰胺腺嘌呤二核苷酸(NADH),在單光子激發時,在波長為350nm光的激發下發出450nm熒光;而在雙光子激發時,可采用750nm的激發光得到450nm熒光。由于雙光子激發需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發出的激光具有很高的峰值能量和很低的平均能量,從而可以減少光漂白和光毒性帶來的不利影響。
首先,雙光子成像采用波長范圍約在700~1000nm的近紅外光激發,在組織中的散射系數較小,穿透性很好,因此非常適合厚樣本的觀察。同時,由于是近紅外光激發,也能避免樣品中激發波長較短的自發熒光物質的干擾,可獲得較強的熒光信號(如下圖)。所以雙光子成像具有較深的穿透力和較小的光毒性。通常在活物腦組織中雙光子顯微鏡有效成像深度可達200~500μm,能夠較好地進行三維成像。雙光子成像的另一大優勢在于精確的空間點聚焦性。一般條件下,物質只會被單光子激發,只有在光子密度足夠高的情況下,物質才會吸收兩個光子從而被激發,所以,雙光子只會在光子密度蕞高的物鏡焦點附近發生,很少產生焦平面外的雜散光(如下圖)。這種性質既提高了成像質量,也降低了樣本的光漂白、光損傷區域。基于這些優勢,使得雙光子顯微鏡非常適合對活細胞、活組織進行長時間在體成像。于雙光子激發需要兩個光子同時到達,因此只有在焦點附近的樣品區域才會激發,從而實現三維成像和高分辨率。
使用雙光子顯微鏡可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經元活動,但神經元活動的速度對于常規的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現,但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數據采集系統的標準雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復頻率的920nm的激光器,通過FACED模塊可產生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導致x軸的橫向分辨率為0.82?m,y軸的橫向分辨率為0.35?m。雙光子顯微鏡使用長波長脈沖光,是通過物鏡匯聚的。ultima雙光子顯微鏡供應商聯系方式
雙光子顯微鏡中,同樣每個時刻只有焦平面上一個點的信號被探測,并且連焦平面外的熒光信號也不會有。國外激光雙光子顯微鏡授權供應商
細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當個細胞興奮時,產生了一個電沖動,此時,細胞外的鈣離子流入該細胞內,促使該細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子結合,促使這一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級地傳遞下去,從而構成復雜的信號體系,終形成學習、記憶等大腦的高級功能。在哺乳動物神經系統中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態下大部分神經元細胞內鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經遞質的過程必不可少。眾所周知,只有游離鈣才具有生物學活性,而細胞質內鈣離子濃度由鈣離子的內外流平衡所決定,同時也受鈣結合蛋白的影響。細胞外鈣離子內流的方式有很多種,其中包括電壓門控鈣離子通道、離子型谷氨酰胺受體、煙堿型膽堿能受體(nAChR)和瞬時受體電位C型通道(TRPC)等。神經元鈣成像的原理就是利用特殊的熒光染料或鈣離子指示劑將神經元中鈣離子濃度的變化通過熒光強度表現出來,以反映神經元活性。該方法可以同時去觀察多個功能或位置相關的腦細胞。國外激光雙光子顯微鏡授權供應商