2024-12-07 08:09:29
當前納米力學主要應用的測試手段是納米壓痕和基于原子力顯微鏡(AFM) 的力—距離曲線方法,實際上還有另外一種基于AFM 的納米力學測試方法——掃描探針聲學顯微術(atomic force acoustic microscopy,AFAM)。AFAM具有分辨率高、成像速度快、相對誤差低、力學性能敏感度高等優點。然而,目前AFAM 的應用還不夠普遍,相關領域的學者對AFAM 了解和使用的還不多。為此,我們在前期研究的基礎上,經過整理和凝練,形成了這部專著,目的是推動AFAM這種新型納米力學測量方法在國內的普遍應用。納米力學測試還可以評估材料在高溫、低溫等極端環境下的性能表現。涂層納米力學測試原理
與傳統硬度計算不同的是,A 值不是由壓痕照片得到,而是根據 “接觸深度” hc(nm) 計算得到的。具體關系式需通過試驗來確定,根據壓頭形狀的不同,一般采用多項式擬合的方法,比如針對三角錐形壓頭,其擬合結果為:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+ 36. 9式中 “接觸深度”hc由下式計算得出:hc = h - ε P max/S,式中,ε是與壓頭形狀有關的常數,對于球形或三角錐形壓頭可以取ε = 0.75。而S的值可以通過對載荷-位移曲線的卸載部分進行擬合,再對擬合函數求導得出,即,式中Q 為擬合函數。這樣通過試驗得到載荷-位移曲線,測量和計算試驗過程中的載荷 P、壓痕深度h和卸載曲線初期的斜率S,就可以得到樣品的硬度值。該技術通過記錄連續的載荷-位移、加卸載曲線,可以獲得材料的硬度、彈性模量、屈服應力等指標,它克服了傳統壓痕測量只適用于較大尺寸試樣以及只能獲得材料的塑性性質等缺陷,同時也提高了硬度的檢測精度,使得邊加載邊測量成為可能,為檢測過程的自動化和數字化創造了條件。湖南微納米力學測試廠商在納米力學測試中,常用的儀器包括原子力顯微鏡、納米硬度儀等設備。
納米壓痕技術通過測量壓針的壓入深度,根據特定形狀壓針壓入深度與接觸面積的關系推算出壓針與被測樣品之間的接觸面積。因此,納米壓痕也被稱為深度識別壓痕(depth-sensing indentation,DSI) 技術。納米壓痕技術的應用范圍非常普遍,可以用于金屬、陶瓷、聚合物、生物材料、薄膜等絕大多數樣品的測試。納米壓痕相關儀器的操作和使用也非常方便,加載過程既可以通過載荷控制,也可以通過位移控制,并且只需測量壓針壓入樣品過程中的載荷位移曲線,結合恰當的力學模型就可以獲得樣品的力學信息。
AFAM 的基本原理是利用探針與樣品的接觸振動來對材料納米尺度的彈性性能進行成像或測量。AFAM 于20 世紀90 年代中期由德國薩爾布呂肯無損檢測研究所的Rabe 博士(女) 首先提出,較初為單點測量模式。2000 年前后,她們采用逐點掃頻的方式實現了模量成像功能,但是成像的速度很慢,一幅128×128 像素的圖像需要大約30min,導致圖像的熱漂移比較嚴重。2005 年,美國**標準局的Hurley 博士(女) 采用DSP 電路控制掃頻和探針的移動,將成像速度提高了4~5倍(一幅256×256 像素的圖像需要大約25min)。在醫學領域,納米力學測試可用于研究細胞和組織的力學性質。
目前納米壓痕在科研界和工業界都得到了普遍的應用,但是它仍然存在一些難以克服的缺點,比如納米壓痕實際上是對材料有損的測試,尤其是對于薄膜來說;其壓針的曲率半徑一般在50 nm 以上,由于分辨率的限制,不能對更小尺度的納米結構進行測試;納米壓痕的掃描功能不強,掃描速度相對較慢,無法捕捉材料在外場作用下動態性能的變化。基于AFM 的納米力學測試方法是另一類被普遍應用的測試方法。1986 年,Binnig 等發明了頭一臺原子力顯微鏡(AFM)。AFM 克服了之前掃描隧道顯微鏡(STM) 只能對導電樣品或半導體樣品進行成像的限制,可以實現對絕緣體材料表面原子尺度的成像,具有更普遍的應用范圍。AFM 利用探針作為傳感器對樣品表面進行測試,不只可以獲得樣品表面的形貌信息,還可以實現對材料微區物理、化學、力學等性質的定量化測試。目前,AFM 普遍應用于物理學、化學、材料學、生物醫學、微電子等眾多領域。納米力學測試可以應用于納米材料的研究和開發,以及納米器件的設計和制造。深圳微納米力學測試供應商
納米力學測試能夠揭示材料表面的微觀結構與性能之間的關系。涂層納米力學測試原理
納米壓痕技術,納米壓痕技術是一種直接測量材料硬度和彈性模量的方法。該方法通過在納米尺度下施加一個小的壓痕負荷,通過測量壓痕的深度和形狀來推算材料的力學性質。納米壓痕技術一般使用壓痕儀進行測試。在進行納米壓痕測試時,樣品通常需要進行前處理,例如制備平整的表面或進行退火處理。測試過程中,將頂端負載在材料表面上,并控制負載的大小和施加時間。然后,通過測量壓痕的深度和直徑來計算材料的硬度和彈性模量。納米壓痕技術普遍應用于納米硬度測試、薄膜力學性質研究等領域。涂層納米力學測試原理