2024-11-20 01:01:46
非常規巖芯油氣具有兩個關鍵參數:一是孔隙度小于 10%,二是孔喉直徑小于1μm 或空氣滲透率小于1mD;而常規巖芯油氣孔隙度范圍多處于 10%~30%,滲透率多大于 1mD。常規巖芯油氣與非常規巖芯油氣的本質區別,具體表現為兩類油氣資源在地質特征、研究方法、技術攻關、勘探方法、“甜點區”評價、開發方式與開采模式等方面存在明顯區別。 非常規巖芯儲層呈現低速非達西滲流特征,存在啟動壓力梯度;滲流曲線由平緩過渡的兩段組成,較低滲流速度下的上凹型非線性滲流曲線和較高流速下的擬線性滲流曲線,滲流曲線主要受巖芯滲透率的影響,滲透率越低,啟動壓力梯度越大,非達西現象越明顯。需要人工壓裂注氣液,增加驅替力,形成有效開采的流動機制。核磁共振孔隙度值通常落在共密度值的±1pu內。高精度NMR非常規巖芯孔隙度檢測
致密油與頁巖油均無明顯圈閉界限,無自然工業產能,需要采用直井縫網壓裂、水平井體積壓裂、空氣與CO2 等氣驅、納米驅油劑等方式進行開發,形成“人造滲透率”,持續獲得產能,屬典型“人造油氣藏”。) 。通過整理國內外有關致密油與頁巖油研究進展,筆者認為二者在地質、開發、工程等方面均存在明顯差異,應定義為 2 種不同類型的非常規巖芯油氣資源。 致密油是指儲集在覆壓基質滲 透率小于或等于 0. 1×10 -3μm2( 空氣滲透率小于 1× 10 -3μm2) 的致密砂巖、致密碳酸鹽巖等儲集層中的 石油。單井一般無自然產能或自然產能低于工業 油流下限,但在一定經濟條件和技術措施下可獲得工業石油產量。如酸化壓裂、多級壓裂、水平井、多分支井等措施,這是目前全球非常規巖芯石油發展的亮點領域,高精度NMR非常規巖芯孔隙度檢測自由弛豫是流體的固有弛豫特性。它是由流體的物理性質控制的,如粘度和化學成分。
非常規巖芯油氣儲層與常規巖芯油氣儲層在儲集性能、孔隙結構、儲層評價標準與方法、儲層中油氣賦存狀態等多個方面均存在較大差異 。整體而言,非常規巖芯油氣儲層以納米、微米孔喉為主,微觀孔喉結構復雜,決定了其低孔低滲的儲集特征,控制了油氣聚集機制、富集規律等基本地質特征,油氣開發需要借助水平井分段壓裂、體積壓裂等特殊方法才能獲取有效經濟產能;常規巖芯油氣儲層孔隙度、滲透率較高,孔喉以微米級為主,甚至可見厘米級溶孔、溶洞,儲集物性較好,油氣開采以常規方式為主。
非常規巖芯油氣突破了儲層物性下限與傳統圈閉找油理念,針對大面積展布的非常規巖芯儲集體,關鍵在于大規模納米級孔喉致密儲層背景與油氣生成、排聚過程的時空匹配。重點研究烴源巖和儲集體評價條件、油氣充注下限及有效性、運移和滲流機理、重要區評價指標等,油氣運移為初次運移或短距離二次運移,生烴增壓和毛細管壓力差是油氣運移和聚集的主要動力,通常遵循非達西滲流定律油氣地質研究的目標是重要區、確定富集甜點區,關鍵是編制出“三圖一表”,即成熟烴源巖厚度平面分布圖、儲層厚度平面分布圖、儲層頂面構造圖和甜點區評價表。微孔隙中的流體表現出快速的T,當TE=0.5 ms時可以觀察到,但當TE=1.2 ms時不能觀察到。
頁巖氣開采是指貯存在微納米孔隙和顆粒間的頁巖氣在人為驅動下運移至宏觀裂縫,極終匯集到井筒的過程 頁巖氣具有多種貯存方式: ①吸附在有機質(干酪根) 孔隙表面; ②游離于孔隙和裂縫中; ③溶解于瀝青和干酪根中.其中吸附是主要貯存方式,吸附氣可以占到頁巖氣總量 20% ~ 85%.吸附量的大小與有機碳含量成正比,此外還受儲層的壓力、溫度和比表面積等因素的影響,關系十分復雜.吸附機理的準確認識對頁巖氣解吸以及產量預測起到至關重要的作用.非常規巖芯的分析有助于評估油氣儲層的性能和開發潛力。麥格瑞非常規巖芯無損檢測
由于流體之間的弛豫時間NMR數據可用于區分粘土結合水、毛細結合水、可動水、天然氣、輕質油和粘性油。高精度NMR非常規巖芯孔隙度檢測
常規巖芯油氣是以圈閉和油氣藏為研究對象,圈閉是重要,學科基礎是浮力圈閉成藏理論。傳統石油地質研究強調從烴源巖到圈閉的油氣運移,尋找有效聚油圈閉是油氣勘探的重要。圈閉是油氣聚集的基本單元,生、儲、蓋、圈、運、保六要素是評價圈閉有效性的關鍵,即油氣生成、運移、聚集和保存等多種地質條件的時空配置,是常規巖芯油氣勘探實踐的重要內容。按照圈閉定型時間與大規模油氣排聚時間的匹配關系,可分為早圈閉型、同步圈閉型和晚圈閉型3種類型。只有那些在油氣區域性運移以前或同時形成的圈閉,即早圈閉型與同步圈閉型對油氣的聚集才有效。油氣地質研究的目標是有利圈閉、確定有效聚油氣圈閉,關鍵是編制出“兩圖一表”,即圈閉頂面構造圖、油氣藏剖面圖和圈閉要素表。高精度NMR非常規巖芯孔隙度檢測